SHORT COMMUNICATIONS

will be about }+6/)/N. (The fact that this probability
may exceed unity is noted by Karle & Hauptman.) The
point we wish to make is that as NV increases, even the
highest values of P (F3n) tend to % A similar conclusion
can be reached from the ‘Patterson function’ point of
view which we outlined above. It is easily shown that
the situation for the determination of Fn as negative
is even less favourable.

We conclude that relation (1) is of value only for very
simple crystal structures.

At first sight equation (4-06) looks more promising,
since X, may contain a large number of terms. It might
appear that although the indication of sign given by a
single term of X, was weak, a large number of such
indications would be statistically significant. We shall
therefore consider the case where X, contains an infinite
number of terms.

Then, in our notation,

8(Z,) = s{% (Fi/—N) (Fren—N)}

= 5{ 3 (FyFhyw— N2},
>

since ﬁ_’ﬁ = N.
Then, by (4-06),

s(Fan) ~ 5{ hz (FiFhow — N2} . (2)

It may be shown that X FR.Fg., is the hth Fourier
=

coefficient of P2, the squared Patterson function, while
ZN? is the contribution to this coefficient of the origin
peak of P% We conclude that (2) is then true to the extent
that all peaks in P? may be ignored except that at the
origin and those at +2r;. In this way the correlation
between s(Fsn) and X, is seen to be even weaker than
that between the former and ZX). The effect of squaring
the Patterson function is to decrease, to one quarter,
the relative weight of the peaks at 2r, compared with
the peaks at (r;—r;). This situation cannot be altered
by increasing the number of terms in X,.
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Equation (4-05) has not been considered in any detail
but it is clear that it, too, embodies the inherent faults
of (4:03) and (4-06).

It will also be seen that, even if a number of signs can
be determined for the set of indices for which %, k and
are all even, the extension to the other sets of terms will
be very tenuous. Only (4-04) remains for this purpose,
if we do not take the discredited (4-05) into account,
and we have seen that this is equivalent to applying the
normal sign relationship s(h) = s(h’)s(th+h’). But the
only additional information will be the three arbitrary
signs which define the choice of origin. The determination
of the next sign for a coefficient for which A, k and
are not all even will depend on one sign relationship!
There would then possibly be two sign relationships for
the next sign determination, and so on. It is our ex-
perience that attempts to build a knowledge of signs on
too narrow a base inevitably fail unless the crystal struc-
ture problem is a very simple one.

We thus conclude that the solution of the phase problem
for the centrosymmetrical crystal given by Hauptman &
Karle offers nothing new for solving complex structures.
‘While our criticisms have been directed to the procedure
suggested for space group P1I, the simple ‘Patterson func-
tion’ interpretation also shows the weakness of that
suggested for the only other space group considered by
Hauptman & Karle in detail, namely P2,/a.

The example which they have worked out, naphthalene,
is far too obliging in many respects. The high symmetry
gives extremely large unitary structure factors and there
is no doubt that this structure can be solved by a number
of previously published direct methods.
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The statistical approach to X-ray structure analysis has
been treated by Hauptman & Karle (1953), who derived
a number of formulae for the probabilities that certain
structure factors are positive. However, a peculiar
situation arises from their analysis. Although their
mathematical approach is valid, and the formulae for the
determining quantities X, are correct within the limita-
tions of their derivation, the conclusions, that a practical
solution of the phase problem has been attained for all
centrosymmetrical structures—provided a sufficient
number of structure factors is available—cannot be
maintained.

We have constructed more accurate distribution func-
tions using the Tables of Vand (1953), and have also
formed a simpler mathematical derivation of the statisti-
cal formulae. The true distribution functions yield not

only probabilities, but also the inequalities of Harker &
Kasper. The Hauptman & Karle formulae are confirmed
as approximations when the number of atoms is large
and the magnitudes of structure factors involved are
small.

However, when the formulae are applied to a structure
of space group P1, the following difficulties arise: Only
the equations (4:03) and (4-06), as numbered by Haupt-
man & Karle, can be used in the initial step, since these
alone contain squares of structure factors only. For N
equal atoms these become
(By—1)

z for h=2h,
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(B2—1) E}—1) for h = 2h,+2h,,
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where E is the structure factor on a scale (E?) = 1.

Turning first to Zi: it is immediately apparent that
this is equivalent to the coefficient of a sharpened Patter-
son with the peak at the origin removed. It is well known
that a Patterson of a structure having a center of sym-
metry contains a set of ‘rotational’ peaks corresponding
to the vectors across the center of symmetry. These
peaks correspond to an image of the structure on twice
the scale. A detailed calculation (Vand & Pepinsky, 1953,
1954) indicates that the Hauptman-Karle statistical
formulae are simply making use of the above property
of the Patterson function in order to obtain the bias for
the probability of sign of a structure factor. It unfor-
tunately follows that when the statistical formulae are
used jointly, nothing else than a Patterson is obtained,
whatever the number of structure factors used. Therefore the
solution converges to the highest peaks of the Patterson,
and the statistical method becomes successful only when
the highest peaks of the Patterson resemble the image of
the structure on twice the scale. This seldom occurs in
practice, however, since the wanted rotfational peaks have
half the weight of the non-rotational peaks. It follows that
the only structures which can be solved in space group
PT are those with two atoms per cell. We have tried to
apply the method to a four-atom structure, and have
obtained—as theoretically predicted—an incorrect solu-
tion resembling the Patterson rather than the structure
itself.

Turning now to Z,: we see that this is equivalent to
a convolution in reciprocal space, and therefore to a
product in Patterson space. This product turns out to
be nothing else than a square of Patterson density. This
sharpens the Patterson peaks, but brings out the un-
wanted peaks much higher than the wanted rotational
peaks. It therefore can be concluded that if X leads
jointly to an incorrect structure, then X, certainly leads
jointly to an incorrect structure. The claim that the
formulae represent a solution for the space group P1T is
therefore fallacious.

The above considerations need to be modified when
other elements of symmetry are present. We have shown
(Vand & Pepinsky, 1953) that the statistical formulae
then become equivalent to Patterson—Harker sections.
If these sections resemble the image of the structure on
twice the scale, the statistical formulae become successful ;
but the Harker sections then become so, too. This is the
case with naphthalene, used as an example of the power
of their method by Hauptman & Karle. In this respect,
their method does not represent anything of greater power
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than that of previously known methods. On the contrary,
the intelligent use of Harker maps permits one to
distinguish and allow for non-Harker peaks, whereas the
statistical method conceals their influence in the mathe-
matics involved.

This note is not meant to belittle entirely the value of
the formulae derived by Hauptman & Karle. In fact,
their approach has led us to derivations of maps which
are superior to Harker maps for the purposes of structure
determination. For example, one of the funections for
space group P2,/c is & map having

Usno kz (=D (BRy—1)

as Fourier coefficients. This map shows non-Harker peaks
considerably suppressed. Details of the derivations and
properties of these functions have been made available
elsewhere, along with a full account of all the above
matters (Vand & Pepinsky, 1953).

Our conclusions are in full agreement with those
obtained independently by Cochran & Woolfson (1954),
which appear elsewhere in this issue of Acta Crystallo-
graphica. We are grateful to these authors for permitting
us to see their communication before its publication.
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A routine solution of the phase problem, valid for all 92
centrosymmetric space groups, is described in our Mono-
graph (Hauptman & Karle, 1953). The evidence for its
validity we felt was overwhelming. The mathematical
development is exact and rigorous, and is not challenged
in the above notes (Cochran & Woolfson, 1954; Vand &
Pepinsky, 1954). The probability theory yields the correct

structure invariants and seminvariants. The final for-
mulas are capable of independent justification by means
of a simple geometric interpretation. Finally, the ap-
plication of these formulas to the naphthalene structure
was successful. We consider this application non-trivial
because no advantage was taken of the special properties
of this simple structure, and only a small fraction of the



